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Exposure Estimation in the
Presence of Nondetectable
Values: Another Look

A common problem faced by industrial hygienists is the selection of a valid way of dealing with
those samples reported to contain nondetectable values of the contaminant. In 1990, Hormung
and Reed compared a maximum likelihood estimation (MLE) statistical method and two
methods involving the limit of detection, L. The MLE method was shown to produce unbiased
estimates of both the mean and standard deviation under a variety of conditions. That method,
however, was complicated, requiring difficult mathematical calculations. Two simpler alternatives
involved the substitution of L/2 or L/\/2 for each nondetectable value. The L/\/2 method was
recommended when the data were not highly skewed. Although the MLE method produces the
best estimates of the mean and standard deviation of an industrial hygiene data set containing
values below the detection limit, it was not practical to recommend this method in 1990.
However, with advances in desktop computing in the past decade the MLE method is now
easily implemented in commonly available spreadsheet software. This article demonstrates how
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this method may be implemented using spreadsheet software.
Keywords: analytical detection limits, exposure concentration, hygiene surveys,
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common problem faced by industrial hy-

gienists in characterizing the data they

collect in a survey is selecting a valid way

of dealing with those samples reported to
contain nondetectable amounts of the contami-
nant. Those samples are reported to have a value
less than L, where L is the limit of detection as
defined by the sampling and analytical methods.
Concentrations of industrial contaminants are
commonly much lower now than in the past, re-
sulting in a higher percentage of values below the
detection limit. In a recent survey of occupation-
al exposure to diesel exhaust in the railroad en-
vironment, for example, Verma'"’ and colleagues
found that 5 of 9 samples for respirable com-
bustible dust on board locomotives were below
the limit of detection, as were 7 of 14 in the
heavy repair vard.

The most commonly used descriptors for any
data set arc the mean and standard deviation.
When samples are collected over time, as with
grab samples within a day or personal samples
over a series of days, the data generally are as-
sumed to follow the lognormal distribution.®

Research has shown that this model does apply
to data collected in the field. An example of such
a study is one that involved 82 long-term and
111 short-term personal samples for hydrocar-
bon exposures at petroleum bulk terminals and
agencies.®

In 1990, Hornung and Reed® published an
analysis of methods for estimating the descriptors
of a data set in the presence of nondetectable
values. The techniques proposed included a max-
imum likelihood estimation (MLE) statistical
method and two methods involving the limit of
detection. Computer simulation was used to
evaluate each method with respect to the bias
associated with estimation of the mean and stan-
dard deviation. The maximum likelihood meth-
od was shown to produce unbiased estimates of
both the mean and standard deviation under a
variety of conditions. However, that method was
described as ““‘somewhat complex and requiring
laborious calculations and use of tables.”*® Two
simpler alternatives involved the substitution of
L/2 and a new proposal for the substitution of
L/V2 for each nondetectable value. The L/V2
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method was recommended when the data were not highly skewed.
In a recent review of methods for studying the determinants of
exposure, Burstyn and Teschke® found that hygienists reported a
variety of methods for dealing with exposures below the detection
limits. These included dichotomization of the exposure variable
(exposed,/unexposed), substitution of /2 or L/ V2 for the non-
detected values, or a random selection of a value between Q and
the detection limit.

Hygienists also may be faced with a variable detection limit, as
when sampling time varies. In this situation substitution of 1/2
orL/ V2 fails completely because these values will often be much
larger than the detection limit for a sample with longer sampling
time. Suppose, for example, that the detection limit is 10 units
when sampling for 8 hours. If a task is sampled tor only 2 hours,
then the detection limit will be 40 units. It would certainly not
make sense to impute a sampling result of 20 units in this circum-
stance. The MLE method continues to be valid in this situation.
The bias in the estimation of the statistical parameters is larger in
this circumstance than with a single detection limit {simulations
not shown), but it is possible to compute estimates for the statis-
tical parameters.

Although the MLE method produces the best estimates of the
mean and standard deviation of an industrial hygiene data set con-
taining values below the detection limit, it was not practical to
recommend this method in 1990. Advances in desktop computing
in the past decade, however, have eliminated the requirement for
“laborious calculations and the use of tables.” MLE is easily im-
plemented in commonly available spreadshect software such as Mi-
crosoft® Excel or Corel’s® Quattro Pro. This article demonstrates
how this method may be implemented using spreadsheet software.
Once the spreadsheet template is set up, it can be readily used for
any hygiene data set.

One is commonly interested in the mean of the hygiene data,
My, and not the mean of the logarithms of the data. Once MLE
estimates of the mean and standard deviation of the logarithms of
the data have been calculated, the mean of the observed data can
be computed from Formula A:

mean (observed data) = exp(p + 0.502) (A)

The standard deviation of the observed data can be computed
from Formula B:

Standard deviation (observed data)
= (fexp2p -+ a2)lfexpla? — 1)])°* (B)

Perkins® points out that these estimates can be biased if w and o
are calculated from the data, as they are likely to be in most hy-
giene sampling situations. He presents a tabular method to com-
pute a minimum variance unbiased estimator. Calculation of the
confidence limits on the mean is rather complicated. For details
see the discussion in Perkins. (@ p- 334

AN OVERVIEW OF MLE

LE is a method for estimating the parameters of a statistical
distribution from observed data. The parameters selected are
those that would maximize the probability of observing the data
if they were randomly drawn from the statistical distribution. To
simplify the discussion, only the case of the lognormal distribution
will be considered.
The lognormal is a distribution with two parameters, the mean,
., which specifies the center of the distribution; and the standard
deviation, o, which specifies the spread of the data. Let In(x;) be
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the logarithm of the measured value, x, of hygiene sample i. Then
the probability distribution is defined by:

>

Lognormal probability function f(x,, w, o)

AL L {mlingx) 5 )
= XD -
V2Ilo 20°

which is the probability of observing a particular value x;, given
and o for the distribution. Now, one of the properties of proba-
bility is that, if P,, P,, and P, are the probabilities of observing
individual events, such as ‘“‘heads” in the flip of a coin, then the
probability of observing the three events together is the product
of the individual probabilities P, X P, X P, (so that the probability
of observing three heads in the toss of a coin is 0.5 X 0.5 X 0.5
= 0.125). If there are thus three observations, y,= In(x,), v, =
In(x,), and y; = In(x;), from a lognormal distribution with mean,
W, and standard deviation, o, the probability of obtaining these
values for the three observations is

P(xy, x5, lel‘Lv a)
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In statistical terminology this probability is called a likelihood,
and the method of maximum likelihood finds those values of
and o that maximize this probability. If the only information avail-
able about the distribution of exposures in a workplace comes
from these observations, the mean and standard deviation of the
exposures can be estimated by finding those values of p and o
that will maximize the probability of observing these data values
under the assumption that the data are lognormally distributed.
The MLE method requires the specification of a probability dis-
tribution for the data. The method for the lognormal distribution
has been outlined. If the data are not lognormally distributed, the
mean and standard deviation will not be correct. Data analysts
should thus examine the distribution of their data, using a method
such as cumulative distribution plots, to confirm that the assump-
tion of lognormality is reasonable.

Figure 1 illustrates these ideas with three data points drawn
from a lognormal distribution. The vertical lines show the prob-
ability of observing each value, given a variety of means with fixed
standard deviation. The text in the panels gives the likelihood for
each experimental value of the mean. The likelihood is maximal
in Panel C, which provides the best estimate of the mean, given
the data, x.

Now, what if all we know about observation x; is that it is less
than some detection limit, L? The probability of observing a value
less than L is P;, the area under the lognormal distribution curve
up to log(L) (from the laws of probability the total area under the
curve is equal to 1). This probability is available in statistical tables
and is programmed into spreadsheet applications. With this value
for P, the probability of observing x,, x,, X; for the three samples,
given W and o, is

0 ol T g
y S SIS
20 \//2110}:\p 202

exp X P a)

V21lo
It is conventional to simplify computations by taking loga-
rithms to convert this product to sums. The task is to find values
of p and o that will maximize the probability (log likelihood). It
turns out that this is easy to do using spreadsheet software on a
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personal computer. The next section demonstrates how that is

Panel A: L{u=2|y)=005 Panel B: L(¢=-11y)= 0001 i
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o al USING SPREADSHEET SOFTWARE TO

it A COMPUTE MLES

g S he goal is to maximize the likelihood of the observations that
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are assumed to follow a lognormal distribution. It has been

M M . i 3 S
shown that, if all we know about observation x is that it is less

Panel C: L(u =11y)=.023 Panel D: L(u=1.2y)=.022 ; Gl i 3 "
3 5 than some detection limit, L, then the probability of observing a
+ & value less than L is P, the area under the normal distribution
curve up to log(L). This probability is programmed into spread-
i & sheet applications. In Microsoft Excel, the function is NORM-
S S DIST. This function returns the normal cumulative distribution
for the specified mean and standard deviation. The syntax is:
) g NORMDIST(x, mean, standard-dev, cumulative), where x is the

o -6 -4 -2 [} 2 4 6 o-6 -4 =2 (o} 2 4 6

value for which the probability is needed (in this instance, since a
normal distribution of the logarithms of the observed values are
being discussed, x is the logarithm of the measured value); mean
FIGURE 1. A schematic illustration of MLE. Three points have is the mean of the lognormal distribution; standard_dev is the stan-
been selected from a lognormal distribution. A normal curve with dard deviation of the lognormal distribution; and cumulative is a

variable mean is slid along the x axis. The likelihood for each Towival valie tar d ) he £ Fibhe Bicts If
observation is given by the line segment to the normal curve. OflcaLivalic thatideteHnics the 1oy oL the Tuncion. Lt cumu-

The likelihood for the sample of three observations, given the lative is TRUE, NORMDIST returns the cumulative distribution
selected value for the mean, is given by the sum of the individual function, which is the desired result.
likelihoods and is displayed in the title bar for each panel. In maximizing the likelihood function, it is conventional to

Maximizing the sample likelihood selects the optimal estimate of

the mean of e diattbation apply a logarithmic transformation to convert the product of like-

lihood terms to a sum. Figure 2 illustrates a spreadsheet template
for the maximization of the log-likelihood. For the purposes of
demonstration, 10 data points have been drawn from a lognormal
distribution and are listed in Column A. An analytical detection
limit of three units has been presumed, and so the smallest data

A I B [ c e | E
1 Demonstration Spreadsheet for Maximum Likelihood Calculations
2
3
7 Solver Cells
5 DATA* Log Likelihood of Observation, given estimate of Mean & SD Starter |Mean [2.14
6 [20.25 =LN((1/((2*P1())"0.5*E$6))*EXP(-(1/2)*((LN(A6)-E$5)/E$6)"2)) Starter  |SD 0.71
7 {19.94 =LN((1/((2*P1())"0.5*E$6))*EXP(-(1/2)*((LN(A7)-E$5)/E$6)"2))
8 19.52 =LN((1/((2*PI())*0.5*E$6))*EXP(-(1/2)*((LN(A8)-E$5)/E$6)*2))
9 18.29 =LN((1/((2*P1())"0.5*E$6))*EXP(-(1/2)*((LN(A9)-E$5)/E$6)"2))
10 {7.:23 =LN((1/((2*PI1())*0.5*E$6))*EXP(-(1/2)*((LN(A10)-E$5)/E$6)"2))
11 |4.41 =LN((1/((2*P1())"0.5*E$6))*EXP(-(1/2)*((LN(A11)-E$5)/E$6)"2))
12 /3.06 =LN((1/((2*P1())*0.5*E$6))*EXP(-(1/2)*((LN(A12)-E$5)/E$6)"2))
13 <3 =LN(NORMDIST(LN(3),E$5,E$6, TRUE))
14 <3 =LN(NORMDIST(LN(3),E$5,E$6, TRUE))
15 =3 =LN(NORMDIST(LN(3),E$5,E$6, TRUE)) w
16 EO?‘
17 &
18 Total LogLikelihood g
19 =SUM(B6:B15) =
20 %
21 b
22 |* Demonstration data are drawn from a lognormal distribution with Mean (of logs) = 2 and Geometric Standard Deviation = 3.0 §
23 173
24 [Mean of Logarithms|of Observed data = 2.14 (Computed from observed data)
25 [Standard Deviation |of Logarithms of Observed data = 0.71 (Corresponds to GSD of 2.03)
26
27 |Estimated Mean of |Observed data =EXP(E5 + 0.5*E6"2)
28 |Estimated Standard|Deviation of Observed Data=(EXP(2*E5+E62)*((EXP(E62) - 1)))*0.5
FIGURE 2. A sample spreadsheet demonstrating the structure of a template for MLE
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values have been labeled as <3. To illustrate the underlying for-
mula structure of the spreadsheet, turn on the formula view in
Excel.

For the data points with measured values, Column B contains
the logarithm of the likelihood for that observation. A crucial
point is that one cannot work with symbolic equations in spread-
sheet software. Numerical values must thus be substituted for
and o. Thus, an initial, or starter, value is inserted for the mean
and standard deviation into the spreadsheet. These appear in cells
E5 and E6. The Solver Module in the spreadsheet software will
vary the values in E5 and E6 to maximize the sum of the log
likelihoods in Column B. Convenient starting values for the esti-
mates in E5 and E6 are the mean and standard deviation of the
logarithms of the observed data values in Column A.

Now, all that is known about the smallest data values is that
they are less than 3. The likelihoods for the logarithms of these 3
data points are given by the area under the normal distribution
curve up to log(3). These are computed by the NORMDIST
spreadsheet function. The value of x is In(3), the mean and stan-
dard deviation are given by the starter values in E5 and E6, and
“cumulative” is set to TRUE, since we want the area under the
curve up to In(3), given p and o. The goal is to select values for
E5 and E6 to maximize the sum of the likelihoods, which can be
found in cell B19.

To maximize the sum of the likelihoods, select the Solver Tool
from the Tools menu and then select a target cell. Here, it is B19,
the sum of the log likelihoods. Select the option to maximize the
value of B19. Then select the cells to change in order to achieve
this maximization. Here, they are E5 and EO, the initial estimates
of w and o. Clicking on the Solve button initiates the computa-
tion, and the values in E5 and E6 are replaced with 1.64 and 0.97,
the maximum likelihood estimates of the mean and standard de-
viation of the logarithms of data from the parent distribution of
the data points in Column A. Rows 27 and 28 contain the for-
mulae (A and B above) for the computation of the mean, p, and
standard deviation, o, of the hygiene data from the lognormal
mean and standard deviations.

By substituting hygiene data values for the example data in this
template, MLE estimates can be computed for any data set. If the
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measurements involve more than one detection limit, then the
appropriate limits may be substituted for In(x) in the NORMDIST
spreadsheet function.

CONCLUSIONS

hen hygiene samples are collected over time, as with grab

samples within a day or personal samples over a series of days,
the data generally are assumed to follow the lognormal distribu-
tion. The method of maximum likelihood produces the best es-
timates of the mean and standard deviation in many industrial
hygiene datasets.

The authors have demonstrated how the MLE method may be
implemented in commonly available spreadsheet software (an Ex-
cel template for the calculation of MLE estimates is posted at http:
/ /www.ths. mcmaster.ca/ochl). Because of its optimal properties,
the authors recommend that hygienists adopt the MLE method
when their data include measurements reported to be below the
limit of detection.
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