Week 6, February 17th 2017

Assignment #4

- What does it MEAN?
 - Interpretation. This section should include 4 parts and be limited to 2 pages:
 - A brief conceptual summary of the main results of the study (1 paragraph).
 - An explanation of the findings; a comparison and contrast of the findings with other related studies in the literature, avoiding claims of precedence (1 or 2 paragraphs).
 - The limitations and strengths of the study (1 paragraph each).
 - The conclusion and implications for practice, policy or future research (1 paragraph).

Marking

- Abstract (2 marks)
- Introduction (4 marks)
- Methods (6 marks)
- Results (6 marks)
- Discussion/interpretation (7 marks)

Cutting Continuous Variables

- Why cut up an independent continuous variable?
- Why not cut up an independent continuous variable?
- Why dichotomize a continuous dependent variable?
- Why dichotomize a dependent variable?

Impact Factor: 2.698 | Ranking: Medical Informatics 5 out of 24 | Health Care Sciences & Se

→

Dichotomizing Continuous Variables in Statistical Analysis A Practice to Avoid

Neal V. Dawson, MD Robert Weiss, PhD

Tectonic Belts

- The Insular Belt had no connection to North America before accretion.
- The Coast Belt is the largest outpouring of granite and granodiorite in the phanerozoic.
- The Intermontane Belt 400 million to within 10,000 years old.
- The Omineca Belt 2 billion to 180 million years old.
- The Foreland Belt is 1.4 billion to 33 million years old.

Radon and Tectonic Belts

- Strong relationship formed the basis of 2012 building code policy in British Columbia
- We have decided to split the data by concentrations over and under 100 Bq/m3 as consistent with the WHO guidelines

Radon by Tectonic Area

Visualize

- We can visualize using a bar plot or a stacked bar plot
- What's the relationship here?
- How do we test for significant association?

Radon >100 Bq/m3 by Tectonic Belt

Test for Association

- Cross-tabulation
- Chi-squared test
- H₀: the variables are independent

	radon\$TectonicE	Belt				
radon\$0ver100	Insular	Coastal	Intermontane	Omenica	Foreland	Row Total
0	146 0.986	73 0.961	319 0.772	236 0.643	112 0.862	886
1	2 0.014	3 0.039	94 0.228	131 0.357	18 0.138	248
Column Total	148 0.131	76 0.067	413 0.364	367 0.324	130 0.115	1134

Statistics for All Table Factors

Quantify the Association

- Logistic regression
- What are the odds of something?
- What is an odds ratio?

(Odds Ra	tio (OR)	5
CO	Cases	Controls	Total
Exposed	а	b	a+b
Unexposed	C	d	c+d
Total	atc	b+d	a+b+c+d

OR = (a/c) / (b/d) = (a*d) / (b*c)

The Odds Ratio

- Odds = the probability of something happening over the probability of something not happening
- Odds ratio = ratio of the odds in two different groups

Value of X	А	В	C = A/A+B	D = C/1-C	$E = C_{\chi}/C_{ref}$
	Instances of Y = Under100	Instances of Y = Over100	Y = Over100 as observed probability	Y = Over100 as odds	Odds ratio compared with Insular
Insular	146	2	0.01351	0.01369	reference
Coastal	73	3	0.03947	0.04106	3.08
Intermontane	319	94	0.22760	0.29467	22.10
Omineca	236	131	0.35694	0.55508	41.64
Foreland	112	18	0.13846	0.16071	12.06

The Logit

- Logit = log of the odds
- Properties of the logit allow us to do a linear regression with it as the dependent variable (Y)

Value of X	А	В	C = A/A+B	D = C/1-C	Y = log(D)
	Instances of Y = Under100	Instances of Y = Over100	Y = Over100 as observed probability	Y = Over100 as odds	Logit
Insular	146	2	0.01351	0.01369	-4.29
Coastal	73	3	0.03947	0.04106	-3.19
Intermontane	319	94	0.22760	0.29467	-1.22
Omineca	236	131	0.35694	0.55508	-0.59
Foreland	112	18	0.13846	0.16071	-1.82

Logistic Regression

• Instead of modelling values of y we are modelling the probability of observing y via the log odds of observing y.

Logistic Regression

- logit(Y) = log(odds of observing Y) = $\beta_0 + \beta_1 X_1$
- The intercept is now a NUISSANCE PARAMETER. It does not mean ANYTHING!
- The coefficient for each dummy variable is the log(odds ratio)
- Therefore exp(coefficient) = the odds ratio for that category

```
Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                         0.7114 -6.031 1.63e-09 ***
                              -4.2905
radon$TectonicBeltCoastal
                              1.0986
                                         0.9237 1.189 0.23429
radon$TectonicBeltIntermontane
                             3.0686 0.7211 4.256 2.08e-05 ***
radon$TectonicBeltOmenica
                                       0.7197 5.143 2.70e-07 ***
                              3.7018
                              2.4623 0.7554 3.260 0.00112 **
radon$TectonicBeltForeland
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1191.3 on 1133 degrees of freedom
Residual deviance: 1072.4 on 1129 degrees of freedom
AIC: 1082.4
```

```
Odds ratio for Omenica = \exp(3.7018) = 40.5
LCI = \exp(2.5860 - 1.96*0.43094) = 9.9
UCI = \exp(2.5860 + 1.96*0.43094) = 166.0
```

The Omenica belt is associated with a 40.5-fold [9.9,166.0] increase in THE ODDS OF RADON BEING >100 Bq/m³ compared with the insular belt.

Model Fit

- Because logistic regression is weighted by the number of observations available along every point of the line, it typically uses maximum likelihood estimators (MLE), not least squares
- Model fit is assessed by subtracting the residual deviance from the null deviance to get the deviance explained by the model (similar to the variability explained in linear regression).
- The deviance explained follows a chi-squared distribution, so we use that to look up its significance along with the difference in degrees of freedom between the null and fitted models

Coefficients:

Collinearity in Multiple Regression

- Collinearity occurs when two variables in a multiple regression model are measuring essentially the same thing
- Collinearity makes models challenging to interpret because the statistical software does not know which variable to apportion the effect to
- It is up to YOU to evaluate whether variables are collinear based on common sense and evidence of collinearity
- The best evidence for collinearity is large changes in the coefficients for one variable when a potentially collinear variable is added to the model
- Let's try logistic regression with the POTENTIAL and TECBELT variables

Radon Potential & Tectonic Belt

• How would we test for an association between these variables?

	radon\$Tectonic	:Belt				
radon\$Potential	Insular	Coastal	Intermontane	Omenica	Foreland	Row Total
LOW	0 0.000	26 0.342	266 0.644	62 0.169	68 0.523	422
MOD	126 0.851	34 0.447	61 0.148	69 0.188	0 0.000	290
HIGH	22 0.149	16 0.211	86 0.208	236 0.643	62 0.477	422
Column Total	148 0.131	76 0.067	413 0.364	367 0.324	130 0.115	1134

Statistics for All Table Factors

Pearson's Chi-squared test

Chi² = 592.1392 d.f. = 8 p = 1.14562e-122

Potential Only

- Did we explain much deviance?
- How does moving from the low category to the high category affect the odds of finding a radon concentration >100 Bq/m³?

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2497 0.1170 -10.682 <2e-16 ***

radon$PotentialMOD -0.3680 0.1966 -1.872 0.0612 .

radon$PotentialHIGH 0.1574 0.1621 0.971 0.3316

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1191.3 on 1133 degrees of freedom

Residual deviance: 1183.6 on 1131 degrees of freedom

ATC: 1189.6
```

TecBelt Only

- Did we explain much deviance?
- How does moving from Insular belt to the Omineca belt affect the odds of finding a radon concentration >100 Bq/m³?

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                                         0.7114 -6.031 1.63e-09 ***
(Intercept)
                              -4.2905
radon$TectonicBeltCoastal
                             1.0986
                                         0.9237 1.189 0.23429
radon$TectonicBeltIntermontane 3.0686
                                         0.7211 4.256 2.08e-05 ***
radon$TectonicBeltOmenica
                            3.7018 0.7197 5.143 2.70e-07
                                                                常常常
radon$TectonicBeltForeland
                           2.4623
                                         0.7554 3.260 0.00112 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1191.3 on 1133 degrees of freedom
Residual deviance: 1072.4 on 1129 degrees of freedom
AIC: 1082.4
```

Both

• Did we explain much more deviance with both variables?

Coefficients.

• How do the crude odds ratios compare with the adjusted odds ratios?

coefficiences							
	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	-4.4466	0.7426	-5.988	2.13e-09	***		
radon\$Potentia1MOD	0.1992	0.2279	0.874	0.382218			
radon\$Potentia]HIGH	-0.1322	0.1888	-0.700	0.483664			
radon\$TectonicBeltCoastal	1.1855	0.9275	1.278	0.201223			
radon\$TectonicBeltIntermontane	3.2203	0.7384	4.361	1.29e-05	***		
radon\$TectonicBeltOmenica	3.9034	0.7337	5.320	1.04e-07	***		
radon\$TectonicBeltForeland	2.6800	0.7772	3.448	0.000564	***		
Signif. codes: 0 '***' 0.001	'**' 0.01	'*' 0.05 ⁽ .	' 0.1'	' 1			
-							
(Dispersion parameter for binomial family taken to be 1)							
		-					
Null deviance: 1191.3 on 1	1133 degr	ees of free	edom				
Residual deviance: 1070.1 on 1	1127 degr	ees of free	edom				
AIC: 1084.1	_						

Odds Ratios Comparison

Coefficients changing signs is the hallmark of the instability introduced by collinearity between variables Pearson's Chi-squared test Chi^2 = 592.1392 d.f. = 8 p = 1.14562e-122 **Crude OR** Category **Adjusted OR** MOD (vs. LOW) 0.69 1.17 HIGH (vs. LOW) 1.22 0.86 Coastal (vs. Insular) 3.00 3.30 Intermontane (vs. Insular) 21.5 25.0Omineca (vs. Insular) 40.5 49.6 Foreland (vs. Insular) 11.7 15.6

Week 7 (March 3rd)

- More on model building
- Cross tabulation, chi-square, and logistic regression tutorial with Angela
- Open discussion of questions related to the assignment (please post questions that you would like me to address to the listserv)
- Opportunity to get help from both me and Angela with technical aspects of your assignments