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we could select a sample of the beans from the Jar and then estimate the proportion of the two
types of beans. Obviously if we pick a sample of 10 beans from the Jar, it is possible that all
10 may be black. This would lead us to the conclusion that 100% of the beans are black. The

difference between what we conclude from a sample and reality or truth is called sampling
error.

The hygienist is confronted with sampling error when only a sample of the possible expo-
sures in a population is measured. The goal of any scientific measurement is to control all
sources of error in a cost-effective manner. These include measurement error as well as statis-

tical sampling error. However, sampling error constitutes the larger source of error associated
with most industrial hygiene measurements.

As with measurement error, we can use statistics to help us estimate the magnitude of the
sampling error. In the case of measurement error, the normal distribution was used. However,
for statistical sampling error associated with measuring workplace chemical exposures, the
normal distribution generally is not appropriate — the distribution of exposures over time or
across workers is commonly not symmetrical (Esmen and Hammad, 1977, NIOSH, 1977;
Rappaport, 1991). The hygienist may wish to measure things other than exposures to chemi-

cals. For example, exposures to physical agents such as noise may be normally distributed
(Behar and Plener, 1984).

Ways of using each of the various statistical distributions are discussed in detail in
Chapters 9, 14, 16, and 17. However, it is important now to realize that in accounting for sta-
tistical sampling error associated with industrial hygiene exposure assessment, a distribution
other than the normal is needed. The distribution that is commonly used is the lognormal dis-
fribution. Like the normal distribution, the lognormal distribution has many applications in
industrial hygiene as well as other fields.

LOGNORMAL DISTRIBUTION

The good news is that the lognormal distribution is related to the normal distribution; a
lognormally distributed population of observations can be made normally distributed by plot-
ting the logarithms of the values. The bad news is that the similarities end here. The various
fools that have been derived from the normal distribution for testing hypotheses, making infer-
ences, and describing characteristics of populations are not so well developed for the lognor-
mal distribution, and those that have been derived are rather complex. Nevertheless, failure to
use the lognormal, when it is appropriate, can lead to important errors both in the testing of
hypotheses and in describing the parameters (such as mean and variance) of a population.

As with the normal distribution, the lognormal is a mathematical model that is represent-
ed by an equation:

X0, y"Z n
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262 [Equation 7-7]
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If Equations 7-5 and 7-7 are compared, one can see several similarities. In the case of the
normal probability density function (Equation 7-5), the two parameters ar¢ 6 and p. In the case

of the lognormal, the two parameters are o, and p,. These two parameters are not the mean

and the standard deviation of the members of the population, but rather the mean and the stan-

dard deviation of the logarithms of the members of the population.

Whereas the normal distribution is characteristically bell shaped, the shape of the lognor-
mal distribution cannot be characterized so easily. Figure 7-7 shows that the shape of lognor-
mal distributions can vary considerably. In fact, some lognormal distributions can be so slight-
ly skewed (asymmetrical) that the normal model is adequate for characterizing them. As shown
in Figure 7-7, as the geometric standard deviation and geometric mean change, the shape of
the distribution changes even if the value for the mean remains constant. As the geometric
mean increases, the geometric standard deviation decreases for a constant mean.

In order to develop equations for the lognormal, some terms must be defined. It is impor-
tant that the reader memorize the definitions of these terms in order not to be confused.

1. x,is defined as any observation from lognormal population.
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Figure 7-7. Four lognormal distributions with varying GSD and GM, but a constant mean value of 10

ppm (from NIOSH, 1977).
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X,, 18 defined as the logarithmic transformation of X,

The true distribution mean and the standard deviation of the x, are defined as 1 and o.
The true distribution mean and the standard deviation of the x,, are u, and o,.
The true geometric mean of the x, is defined as

K, =exp (u,) [Equation 7-8]
The true geometric standard deviation of the x, (GSD) is defined as

o, =exp (o,) [Equation 7-9]
7. u#uL#ugandG#GL#cg.

There are six parameters that are important to an understanding of the lognormal distri-
bution, whereas for the normal only two parameters are defined. However, any two of the six
lognormal parameters may be used to define a lognormal distribution, as the interconvertibil-
ity of the equations in Table 7-1 shows.

Figure 7-8 shows the mean, geometric mean, and mode of a lognormal distribution. They
are not equal as they are for the normal distribution. The mode is the value that occurs most
frequently in a distribution. The median of a lognormal is equal to K, the geometric mean. This
1§ derived as follows. We define In X, = x,,. Because the x,_ are normally distributed, the medi-
dily, =mean x, or u,. Now exp(u,) = p o> but this exponential transformation does not change
the relative placement of the values. In other words, L, is the median or middle value of the

%, and S0 exp(u, ) is still a median or middle value. The geometric mean, H,, is the median of
a lognormal, not its mean. The geometric mean is always larger than the mode, and the true
fiiean is always larger than the geometric mean, as Figure 7-8 shows.

Among the terms for variation or spread of a lognormally distributed population, the geo-
metric standard deviation is more widely used than o or & ;- For a lognormal distribution, ¢ or
g, gives us information about the spread of the distribution; however, as shown previously,
without normalizing the standard deviation (e.g., calculating the coefficient of variation), we
do not have any information concerning the relationship of the spread (variance) of the distri-
bution to the mean. In other words, a standard deviation of 1 will have different importance if
ihe mean is 1,000 than if the mean is 10. Standard deviations are positive values with no the-
oretical bound.

On the other hand, the geometric standard deviation has considerably different character-
istics from the standard deviation. It is a measure of relative variability similar to the CV. (It
canbe related to the CV as in Table 7-1). For lognormal distributions of importance to hygien-
s, the geometric standard deviation ranges from approximately 1.2 up to values of 10, and
most are in the range of 1.5 to 3.5 (NIOSH, 1977; Rappaport, 1991; Buringh and Lanting,
0 1991). This is true regardless of the mean or its units. To further examine this characteristic of
the lognormal distribution and the geometric standard deviation, see Table 7-2. For the first
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Table 71
Equations for parameters of the lognormal distribution
Given To Obtain Use
uL K, exp (1,)
Ko O, Hy = K2/ B2 +o2)
G, G5 exp (o))
B O, o, = exp [(In[1 + & 2/ 2])°%]
‘ M, Op M= €eXp [“L Al O'SGLZ]
| K, Oy i, = K, exp [0.55,7]
f M Oy P ([exp (2p to,)][exp (o,)- 1])°s
He O o= (ufexp (o, )][exp (0,2) - 17)°3
He K, Inp,
Hca “L HL il In “C F O'S(GLz)
o, O = Ino,
O O = (In [1+ 0 2p2])0s

. 0. mean and standard deviation of concentration
‘ H,, O, geometric mean and geometric std. dev. of concentration
My, o mean and standard deviation of the natural logs of concentration

Figure 7-
mean =
two columns of concentrations shown, one contains observations that are 1,000 times the size
of the other. Consequently, the mean and the standard deviation of the second sample are 1,000
times larger than the first. In the third and fourth columns, the logarithms are given for the two measure
sets of concentrations, and column three reflects the natural logs of column one. Note that the in a stat
standard deviations of the logarithms for the two samples are equal, and consequently the geo- ation of
metric standard deviations (the exponentials of the standard deviations of the logs) are also error in
equal. Hence, even though the magnitudes of the two data sets are considerably different, the caused 1
geometric standard deviations are the same; so the geometric standard deviation is independ- Th
ent of the order of magnitude of the values in a population.
the mea;
15°2.7,
THE RELATIONSHIP OF SAMPLING AND MEASUREMENT ERRORS ability.
: The
Although the concept will be revisited later, it is important for the purposes of complet- | reduced
ing the ideas presented in this chapter to consider the magnitude of statistical sampling error increasir
associated with a geometric standard deviation in the range of 1.5 to 3.5 compared to typical | has the g
measurement error values. Disregarding for the moment the units of what we are measuring reasonat
consider a measurement method that has a precision or CV of + 10% (bias corrected or mor J take stat

often near 0). This measurement error is typical for industrial hygiene airborne concentration J tistical s:
|




