Week 1, January 13th 2017

General structure

- First 30 mins: recap / review / questions
- Second 90 mins: new material lecture
- Third 60 mins: in-class work on data analysis
- I have to leave at 12:00 on the nose
- Breaks?

Evaluation

- Five assignments (5% 25% graded by me and/or Jessie)
- Group presentation (5% graded by the class)
- In-class, closed-book midterm (20% graded by me)
- I expect you to strive for excellence
- I am a HARD marker

Assignments/Midterm

- #1: 15%, questions and answers
- #2-#3: 5% each, 2-page reports
- #4: 25%, mock short scientific article
- #5a: 25%, sampling strategy group project
- #5b: 5%, sampling strategy group presentation
- Midterm: 20%, 90 minutes in-class

Communications

- At UBC on Fridays only, contact me to meet
- My office is 327B in SPPH
- Questions about course material, assignment details, etc. MUST be emailed to the entire class
- Phone calls should be minimal

Introduction to Radon

Health Canada says...

<200 Bq/m ³	Below guideline
200 – 600 Bq/m ³	Fix within 2 years
>600 Bq/m³	Fix within 1 year

1986 – 2012 Trends Number of annual deaths from lung cancer Number of annual deaths from all natural causes

Hypothetical

All deaths

Lung Cancer / All Natural

Male

Female

Lung Cancer / All Natural

Question: can we predict high risk indoor radon concentrations using data about homes and where they are located?

BCCDC Radon Dataset

Main Floor Radon Concentrations and Terrestrial Background Radiation in British Columbia Communities

Dichotomous Variables

Binary Variables

- Specific type of dichotomous variable where the values are in opposition to each other (i.e. on/off, yes/no, open/closed)
- The terms 'dichotomous' and 'binary' are often used interchangeably, but it's good to understand the technical distinction

Categorical Variables

- Can take one of more than two values
- The number of possible values is limited and fixed

Bedrock Type

Ordinal Variables

- Specific type of categorical variable where the values fall into a hierarchical order (i.e. low/medium/high, disagree/neutral/agree)
- The term 'categorical' is often used without specifying 'ordinal', but it's good to understand the technical distinction

Geologic Radon Potential

Radon Potential Map British Columbia

Zone 1 - High Zone 2 - Elevated

Relative Radon Hazard*

Zone 3 - Guarded **Provincial capital** Major city Major road/highway International boundary

*Important: All dwellings need to be tested for radon; a wide spectrum of radon readings can occur in all three zones.

In this map, the regions depicted reflect geologic conditions where higher radon readings might be found in Zone 1 versus Zone 2 and Zone 3 respectively.

What's on the Y-axis

- Can be expressed as counts or frequencies
- Can also be expressed as percentages, which indicate the probability of observing each category within the dataset
- Statistically, this is often referred to as 'density'

Continuous Variables

- Can take ANY value within their possible range (i.e. weight, radon concentration)
- Variables that can take an infinite number of integer values are often called 'discrete'

Frequency Histograms

- The standard way to visualize the values of a continuous variable
- All statistic programs will have a way to generate histograms

Years

Density Histograms

Shows us the probability of observing values within group for the entire dataset

Years

Density Histograms

• You can control the width of the ranges over which values are aggregated to get a clearer picture

Years

Density Functions

 Or you can fit a smooth line to the data to get a density function that will give you an exact estimate of the probability of observing any value in the range

Years

Probability Distributions

- Most continuous data approximate the shape of a STANDARD probability distribution, and this is why we can do statistics
- We will focus on parametric methods that assume our data follow some type of normal distribution

Logarithms Review

• What value do we have to put in the box to make the number in brackets?

$$2^{P}(8) = ?$$

$$2^{P}(16) = ?$$

$$2^{P}(2) = ?$$

$$3^{P}(27) = ?$$

$$3^{P}(16) = ?$$

$$2^{P}(\frac{1}{2}) = ?$$

$$10^{P}(10000) = ?$$

What is a Logarithm?

- The logarithm of X is the number of times you have to multiply the base of the logarithm by itself to get X
- We will always use base *e*, which is the base of the NATURAL LOGARITHM, or approximately 2.71828

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \cdots$$

- The mathematical constant *e* is used to describe exponential functions
- When I say LOG I always mean the natural logarithm, and you should too

Next Week

- Normal and lognormal distributions
- Summary statistics
- Skewness and kurtosis
- Examples in occupational and environmental health
- Censored values and what to do with them

