Week 2, January 20th 2017

What is this figure missing?

Which is correct?

Option A:

Figure 1 shows the histogram of the log-transformed radon concentrations.

Option B:

The log-transformed radon distributions approximated a normal distribution (Figure 1).

Probability Distributions

- Frequency histograms (vertical bars) give you an general idea of the probability distribution of your data
- The density function (red line) gives the exact shape

Home Age in 1990

Probability Distributions

- Frequency histograms (vertical bars) give you an general idea of the probability distribution of your data
- The density function (red line) gives the exact shape

Home Age in 1990

Probability Distributions

- Most continuous data approximate the shape of a STANDARD probability distribution, and this is why we can do statistics
- We will focus on PARAMETRIC methods that assume our data follow some type of normal distribution

Normal Distribution

- IQ scores of children follow a normal distribution with a mean of 100 and standard deviation of 15
- Real data NEVER follow a hypothetical perfectly normal distribution. The more data you have, the better for characterizing the distribution.

Normal Distribution

Summary Statistics

- We use these to describe the CENTRAL TENDANCY and VARIABILITY of the data.
- What are the mean, median, and mode? Where are they on a perfectly normal distribution?

Calculate the Mean

$$\frac{1}{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

[1] 94 115 127 110 102 103 92 82 75 83

NOTE: \bar{x} is the SAMPLE MEAN and μ is the POPULATION MEAN

Calculate the Standard Deviation

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$

[1] 94 115 127 110 102 103 92 82 75 83

NOTE: s is the SAMPLE SD and σ is the POPULATION SD

Percentiles / Quantiles

- Percentiles are the values below which a percentage of the data are distributed.
- The MEDIAN is also the 50th percentile
- The 75th percentile is the value below which 75% of the data can be found
- The INTERQUARTILE RANGE (IQR) is the range between the 25th and 75th percentiles

Are These Data Normal?

- We have different tools available to address this question:
 - Visual inspection of the density function of the sample compared with a standard normal curve. How do its skewness and kurtosis compare?
 - Visual inspection of the quantile-quantile plot (QQ plot)
 - Statistical tests for goodness-of-fit with data that follow a perfectly normal distribution, like the Shapiro-Wilk test

Normal Distribution

Are These Data Normal?

- We have different tools available to address this question:
 - Visual inspection of the density function of the sample compared with a standard normal curve. How do its skewness and kurtosis compare?
 - Visual inspection of the quantile-quantile plot (QQ plot)
 - Statistical tests for goodness-of-fit with data that follow a perfectly normal distribution, like the Shapiro-Wilk test

Normal Distribution

Skewness

- Skewness describes the shape of the distribution on the x-axis relative to the hypothetical normal
- A perfectly normal distribution will have the same MEAN and MEDIAN value
- If the distribution is POSITIVELY or RIGHT-SKEWED (longer right tail) the mean is higher than the median
- If the distribution is NEGATIVE or LEFT-SKEWED (longer left tail) the mean is lower than the median

Kurtosis

- Kurtosis describes the shape of the distribution on the y-axis relative to the hypothetical normal
- A perfectly normal distribution has a bell shaped
- A distribution with positive kurtosis is relatively taller and skinnier, a value >3 indicates critically non-normal kurtosis
- A distribution with negative kurtosis is relatively shorter and flatter, a value <-3
 indicates critically non-normal kurtosis

Quantile-Quantile Plots

- QQ plots show the quantiles of the sample compared with the quantiles of a standard normal distribution
- This is basically a scatter plot of the 1st, 2nd, 3rd...98th, 99th, and 100th percentiles of the sample and the standard normal
- If the scattered of dots falls along a straight line, it is evidence that the data are normally distributed

Normal Q-Q Plot

Quantile-Quantile Plots

- QQ plots show the quantiles of the sample compared with the quantiles of a standard normal distribution
- This is basically a scatter plot of the 1st, 2nd, 3rd...98th, 99th, and 100th percentiles of the sample and the standard normal
- If the scattered of dots falls along a straight line, it is evidence that the data are normally distributed

Normal Q-Q Plot

Statistical Hypothesis Testing

- You are always testing a NULL HYPOTHESIS (H₀)
- If the test passes, the H₀ is accepted
- If the test fails, the ALTERNATE HYPOTHESIS (H₁) is accepted
- We use the p-value to evaluate whether the test passed or failed
- Typically we use 0.05 as the critical value for p, which means we are willing to wrongly reject H_0 in 5% of cases.
- So, if the value of p < 0.05, the test fails and we:
 - 1. Reject the null hypothesis
 - 2. Accept the alternate hypothesis
 - Have a statistically significant result!
- A SIGNIFICANT result does not imply a MEANINGFUL result

Significant vs. Meaningful

Welch Two Sample t-test

```
x = rnorm(5000, 100, 15)

y = rnorm(5000, 101, 15)
```

```
data: x and y
t = -2.4605, df = 9992.2, p-value = 0.01389
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -1.3171309 -0.1490637
sample estimates:
mean of x mean of y
```

100.1030 100.8361

Two IQ Samples

What is the null hypothesis?
Do we reject it?

Shapiro-Wilk Test

- H₀: the sample was drawn from a normal distribution
- H₁: the sample was not drawn from a normal distribution
- Note that H_1 does not tell us ANYTHING about the distribution the sample was drawn from if H_0 is rejected. We would have to try another test for another distribution.

Shapiro-Wilk normality test

```
data: iq1
W = 0.96356 p-value = 0.8256 Real Data, 10 values

Shapiro-Wilk normality test
```

```
data: iq2
W = 0.98524, p-value = 0.3305 Real Data, 100 values
```

Shapiro-Wilk normality test

```
data: iq4
W = 0.97049, p-value = 0.02412 Skewed Data, 100 values
```

Test Statistics

- Whenever you run a statistical test, the foundation of that test is called its STATISTIC
- The test statistic is calculated by the computer, but you should understand the concept
- The values of the test statistic, themselves, expected to follow some probability distribution
- The p-value represents the probability of observing the calculated test statistic BY CHANCE ALONE

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_{(i)}\right)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

For Your Assignment / Always

Untransformed values = use the continuous data as measured

Log-transformed values = use the natural logarithm of the untransformed values

Arithmetic mean = mean of untransformed values Arithmetic SD = SD of the untransformed values

Log Mean = mean of the log-transformed values Log SD = SD of the log-transformed values

Geometric mean = $e^{\text{(mean of the log-transformed values)}}$ Geometric SD = $e^{\text{(SD of the log-transformed values)}}$

Log-Normal Distribution

- Distribution of the sample Is right-skewed
- Taking the natural logarithm of the sample yields a normal distribution

Normal and Lognormal Distributions

Log-Normal Distribution

- Distribution of the sample Is right-skewed
- Taking the natural logarithm of the sample (i.e. log-transforming the values) yields a normal distribution

Log Values of Lognormal Distribution

Summary Statistics

- We still use these to describe the CENTRAL TENDANCY and VARIABILITY of the data.
- What are the mean, median, and mode? Where are they on a lognormal distribution?
- The central tendency of lognormal distributions is better described by the GEOMETRIC mean than the ARITHMETIC mean
- The spread of lognormal distributions is better described by the GEOMETRIC standard deviation than the ARITHMETIC standard deviation

Calculate the Geometric Mean

- If you say "mean" people (including me) will assume that you are talking about the ARITHMETIC mean
- If you are reporting the GEOMETRIC mean, you must specify
- The GEOMETRIC mean will always be less than the ARITHMETIC mean

$$\overline{X}_{g} = \exp \left[\frac{1}{n} \sum_{i=1}^{n} \log X_{i}\right]$$

In other words, the antilog of the arithmetic mean of the log-transformed values

[1] 94 115 127 110 102 103 92 82 75 83

Calculate the Geometric SD

 The GEOMETRIC standard deviation is analogous to the ARITHMETIC standard deviation in the same way that the geometric mean is analogous to the arithmetic mean

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$

$$s_g = exp\left(\sqrt{\frac{1}{N-1}}\sum_{i=1}^{N}(logx_i - log\bar{x}_i)^2\right)$$

In other words, the antilog of the arithmetic standard deviation of the log-transformed values

[1] 94 115 127 110 102 103 92 82 75 83

Lognormal Curves

- In a perfect lognormal distribution the MEDIAN and the GEOMETRIC MEAN are exactly the same!
- Instead of adding the GEOMETRIC standard deviation to the geometric mean, you
 multiply to the right of the median and divide to the left

Question: how do we test for log normality?

Plot Distributions

Normal and Lognormal Distributions

QQ Plots

Normal Q-Q Plot

QQ Plots

Normal Q-Q Plot

Shapiro-Wilk Test

```
> shapiro.test(iq4)
        Shapiro-Wilk normality test
data: iq4
W = 0.9867, p-value = 6.962e-08
> shapiro.test(log(iq4))
        Shapiro-Wilk normality test
data: log(iq4)
W = 0.9988, p-value = 0.7738
```

Values Below the LOD

- What happens if we simply delete them from the dataset?
- What are the alternative strategies for dealing with them?
 - Use the measured values despite their lack of reliability
 - Use the LOD
 - Set them to 0 or something negligibly different from 0
 - Set them to the LOD/2
 - Set them to the LOD/sqrt(2)
 - Use some probabilistic technique based on the distribution of the values >LOD

log(Radon Concentration Bq/m3)

log(Radon Concentration Bq/m3)

log(Radon Concentration Bq/m3)

log(Radon Concentration Bq/m3)

log(Radon Concentration Bq/m3)

log(Radon Concentration Bq/m3)

Maximum Likelihood Estimates

- An interactive statistical technique that attempts to estimate values below the LOD using what is know about values above the LOD
- Fits the most likely population mean and variance based on the observed data
- Uses that most likely distribution to estimate the unknown values
- Requires some very heavy mathematics that your computer can do for you!

What to Enter in Exposure Data Column	Exposure Data	Log Likelihood of Observation, given estimated mean & SD
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B17)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B18)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B19)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B20)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B21)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B22)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B23)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B24)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B25)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B26)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B27)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B28)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B29)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B30)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B31)-F\$16)/F\$17)^2))
Enter Observed Data:		=LN((1/((2*PI())^0.5*F\$17))*EXP(-(1/2)*((LN(B32)-F\$16)/F\$17)^2))
Data Below LOD, Enter Detection Limit:		=LN(NORMDIST(LN(B33),F\$16,F\$17,TRUE))
Data Below LOD, Enter Detection Limit:		=LN(NORMDIST(LN(B34),F\$16,F\$17,TRUE))
Data Below LOD, Enter Detection Limit:		=LN(NORMDIST(LN(B35),F\$16,F\$17,TRUE))

Next Week

- Assessing the relationship between in dichotomous and continuous variable
- Box plots to visualize
- T-tests to test for differences in the means
- Hypothesis generation
- Simple linear regression
- Standard reporting

