Week 7, March 3th, 2017

Midterm

- Mean = 85% (two 11/10 marks given)
- Median = 85%
- Standard deviation = 4.4%
- Using measured values <LOD
- Effect estimates
- Confidence intervals
- Spatial radon variables
- Individual-level vs. community level variables

Choosing Your Best Model

- Things that I will be looking for:
 - 1. A parsimonious model with variables that makes sense either because you are interested in their specific effects or because you feel the model should be adjusted for their effects
 - 2. Evidence of a systematic approach to choosing variables to include in your model
 - 3. Evidence that you have tested for potential collinearity between variables in you model
 - 4. Evidence that you have evaluated the fit of your final model with the fit of competing models and have chosen it for good reasons
- I HIGHLY SUGGEST (well, basically require) that you include a table summarizing your model building process, giving the regression equations and summary statistics (R² values for linear models, deviance explained for logistic models) for every model along the path to your final model. Highlight the variables with p-values less than 0.05 in bold.
- I also HIGHLY SUGGEST that you test for pairwise associations between all of your potentially predictive variables and that you report on this in your results section
 - Continuous vs. continuous = Pearson correlation
 - Continuous vs. dichotomous / categorical = t-test / ANOVA
 - Dichotomous / categorical vs. dichotomous / categorical = Chi-squared

Regression Model Building

- Start with: Data that has no missing values
- Setting: You have a large set of predictor variables
- Goal: Fit a parsimonious model that explains variation in Y with a small set of predictors
- Automated Procedures and all possible regressions:
 - Backward Elimination (Top down approach)
 - Forward Selection (Bottom up approach)
 - Stepwise Regression (Combines Forward/Backward)
 - Every possible model

Backward Elimination

- Select a significance level to stay in the model (e.g. SLS=0.20, generally .05 is too low, causing too many variables to be removed)
- Fit the full model with all possible predictors
- Consider the predictor with lowest *t*-statistic (highest *P*-value).
 - If P > SLS, remove the predictor and fit model without this variable If $P \le SLS$, stop and keep current model
- Continue until all predictors have P-values below SLS

Forward Selection

- Choose a significance level to enter the model (e.g. SLE=0.20, generally .05 is too low, causing too few variables to be entered)
- Fit all simple regression models.
- Consider the predictor with the highest t-statistic (lowest P-value)
 - If P ≤ SLE, keep this variable and fit all two variable models that include this predictor
 - If P > SLE, stop and keep previous model
- Continue until no new predictors have P ≤ SLE

Let's give this a try...

- I hypothesize that greater geologic perturbation is associated with higher radon concentrations
- My set of potentially predictive variables is
 - Tectonic belt
 - Fracking distance (Kyle)
 - Seismic activity (John)
 - Fault distance (Noreen)
 - Mine distance (Micah)
- My data subset is all homes likely to be on well water (Edrene)

Dependent variable = LogRadon

Independent variable	Test of association	<- p-value	Crude effect estimate * = p<0.05	<- Adjusted R ²
Tectonic belt	ANOVA	<0.001	Co = 0.69* In = 1.23* Om = 1.64* Fo = 1.25*	0.37
Seismic activity	ANOVA	<0.001	Mod = 0.12 High = -0.05 VH = -1.32*	0.31
Fault distance	Pearson R	0.16	-0.002	0.002
Fracking distance	Pearson R	<0.001	-0.001*	0.12
Mine distance	Pearson R	0.06	0.002	0.007

Independent Variable Matrix

	Tectonic	Seismic	Fault	Fracking	Mines
Tectonic		Chi ²	ANOVA	ANOVA	ANOVA
Seismic	p <0.001		ANOVA	ANOVA	ANOVA
Fault	p <0.001	p <0.001		Pearson R	Pearson R
Fracking	p <0.001	p <0.001	R = -0.56 p < 0.001		Pearson R
Mines	p <0.001	p <0.001	R = 0.89 p < 0.001	R = -0.68 p < 0.001	

Model Building

Compared with crude estimate: RED = switched direction / BLUE = changed significance / ORANGE = both

Variables	Adjusted R ²	Tectonic	Seismic	Fault	Fracking	Mines
Tectonic Seismic Fault Fracking Mines	0.378	Co = 1.29 In = 1.48 Om = 2.04* Fo = 1.52 lowp = 0.009	Mod = 0.009 High = -0.29* VH = 0.64 lowp = 0.03	-0.008* p = 0.02	-0.0008* p = 0.04	0.003 p = 0.18
Tectonic Seismic Fault Fracking	0.376	Co = 1.28 In = 1.43 Om = 2.00* Fo = 1.61* lowp = 0.01	Mod = 0.117 High = -0.29* VH = 0.57 lowp = 0.04	-0.005 p = 0.06	-0.0008* p = 0.03	
Tectonic Seismic Fracking	0.372	Co = 1.29 In = 1.53 Om = 2.06* Fo = 1.34 lowp = 0.01	Mod = 0.06 High = -0.25 VH = 0.43 lowp = 0.07		-0.0005 p = 0.12	
Tectonic Seismic	0.370	Co = 1.32 In = 1.71* Om = 2.20* Fo = 1.68* lowp = 0.005	Mod = -0.04 High = -0.21 VH = 0.42 lowp = 0.12			

Tectonic vs. Seismic

Belt